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Abstract

Atomic decomposition can represent arbitrary signals in an overcomplete dictionary sparsely and adaptively, and it can

match the local structure of signals very well. Therefore, it possesses advantages over traditional basis-expansion-based

signal analysis methods, in extracting characteristic waveforms from complicated mechanical vibration signals. Periodic

impulses characterize damaged gear vibration. In order to extract the transient features of gear vibration, atomic

decomposition methods, including method of frames (MOF), best orthogonal basis (BOB), matching pursuit (MP) and

basis pursuit (BP), are used in the analysis of vibration signals from both healthy and faulty gearboxes. With a compound

dictionary specially designed to match the local structure of signals, the meshing frequency and its harmonics, impulses and

transient phenomena of the damaged gear vibration signals are extracted simultaneously. Furthermore, from the

time–frequency plots of atomic decomposition, the gear tooth damage is recognized easily according to the periodic

impulses. By comparing with traditional time–frequency analysis methods, e.g. short time Fourier transform and

continuous wavelet transform, it is found that atomic decomposition is more effective in simultaneously extracting the

impulses and harmonic components of damaged gear vibration signals.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Gears, as important mechanisms for transmitting power or rotation, are widely used in machinery. The
smooth operation and high efficiency of gears are necessary for the normal running of machinery. Therefore,
gear damage detection is a main topic in the field of condition monitoring and fault diagnosis.

Due to the intrinsic dynamic characteristics and complicated ambient excitations, the on-site measured gear
vibration signals are frequently characterized by complexity and nonstationarity, for example: the tooth
meshing effect, amplitude and phase modulation phenomena inherent with gear pair transmission; the
multiple signal components originated from different excitations, complicated propagation, and dynamic
coupling between mechanical components; the time varying characteristics due to the operating conditions;
and especially the transient impulses induced by gear damage.

In order to effectively extract the meaningful information from vibration signals for gear damage detection,
various signal processing methods are employed. The well-known traditional approaches include the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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spectrum, sidebands, and envelope demodulation analysis in the frequency domain, as well as the cepstrum
analysis and time synchronous average in the time domain [1]. To extract information from nonstationary
gear vibration signals caused by faults or operation conditions, various time–frequency analysis methods have
been employed as well. Staszewski et al. [2] applied Wigner–Ville distribution to the detection of local tooth
faults in spur gears. Wang and McFadden [3,4] used both discrete and continuous wavelet transforms to detect
abnormal transients generated in the early stage of gear damage. Regarding the rhythmic property of gear
rotation, cyclostationarity analysis is tried in gear vibration signal processing. Capdessus et al. [5] found that
the vibration of gear systems showed second-order cyclostationarity, and applied it to the early diagnosis of
spalling in gear teeth. Zhu et al. [6] studied the application and effectiveness of cyclostationarity from the first
order to the third order in gearbox condition monitoring. By virtue of the fine time–frequency resolution,
Loutridis [7] utilized empirical mode decomposition in Hilbert–Huang transform to detect damage in gears.
Recently, blind source separation is tested in gear diagnosis as well. Roan et al. [8] applied a nonlinear
adaptive independent component analysis algorithm to gear tooth failure detection. The above-mentioned
methods possess their own merits, as well as shortcomings.

Atomic decomposition [9–15], recently developed in the signal processing community, including method of
frames (MOF) [9,10], best orthogonal basis (BOB) [11], matching pursuit (MP) [12–14], and basis pursuit (BP)
[15], etc., shows advantages such as sparsity and fine resolution over traditional basis-expansion-based signal
processing methods. With a specially designed waveform dictionary adapted to the local structure of signals,
atomic decomposition can extract different features such as impulses, harmonic oscillations, and chirping
phenomena, etc. So far, atomic decomposition methods have been studied in the machine diagnosis
community. Liu et al. [16] employed MP with time–frequency atoms to detect the localized defects of rolling
element bearings. Yang et al. [17] extracted the vibration characteristics of defective rolling element bearings
by means of BP. Shi et al. [18] analyzed the transient vibration of rotating machinery based on adaptive
time–frequency decomposition with Gaussian chirplets.

In engineering applications, a large percentage of gear faults are induced by localized gear damage. Typical
localized damage types include pits, chips, and cracks on gear tooth surface. With such damage existing on
gears, the gear tooth meshing will become not as smooth as the normal one, causing impulses to occur.
Furthermore, during the running of damaged gears, impulses will be produced repetitively due to the gear
rotation, with the period depending on the number of damaged teeth and their distribution over the gear. In a
word, periodic or quasi-periodic impulses characterize the vibration of damaged gears, and provide an
intuitively understandable indicator of localized damage. So in this sense, the effective extraction of impulses
from gear vibration signals is of great importance for gear damage detection.

Although traditional FFT-based signal processing methods play an important role in gear vibration
diagnosis, they require that the signals satisfy a strict assumption of stationarity. While in engineering
applications, on-site acquired gear vibration signals are often nonstationary, due to the fault-induced time
varying property, and especially the transient impulses caused by damaged tooth meshing. Most of all, in
basis-expansion-based methods, the characteristic impulses, which are a key indicator of gear damage, may be
diluted over a large number of basis functions, so that mistakes can be resulted in. Atomic decomposition
represents arbitrary signals with the atoms best matching the characteristic signal structure, without any
redundant intermediate transform, so as to extract the characteristic information directly from the signals, and
to avoid the information loss and preserve the symptom information as much as possible. With a specially
designed time–frequency dictionary, atomic decomposition can extract the impulses, harmonic vibration, and
other transient phenomena directly, and allow for further time–frequency analysis. In this sense, it provides a
new approach to investigate the nonstationary and multi-component gear vibration signals and extract the
inherent damage symptoms.

In this paper, atomic decomposition methods are utilized to analyze the vibration signals and recognize the
tooth damage of gearboxes. In Section 2, the dictionary and the atomic decomposition methods, including
MOF, BOB, MP, and BP, are briefly introduced. In Section 3, the vibration signals of a healthy gearbox and a
faulty one in a pumping station are analyzed. With a specially designed compound dictionary, the
characteristic periodic impulses inherent in the vibration signals are extracted, by means of MP and BP.
Accordingly, from the time–frequency plot, the tooth damage is identified more easily than from the spectrum.
Finally, some conclusions are drawn in Section 4.
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2. Atomic decomposition

Basis expansions in orthogonal bases, such as Fourier and wavelet bases, play an important role in signal
analysis. Basis functions influence signal representations significantly. If the basis functions are similar to the
main components of a signal, the signal can be reconstructed perfectly via only a few basis functions, i.e. the
decomposition is sparse. Otherwise, the signal can only be recovered via a large or even infinite number of
basis functions, and consequently the information contained in the signal will be diluted over much of the
basis functions. In this sense, the traditional basis expansions are not flexible enough for modeling arbitrary
signals encountered in engineering application. For instance, Fourier analysis provides a poor representation
of time localized signals, and wavelet analysis is not well adapted to represent high frequency signals in a
narrow bandwidth. This shortcoming is attributed to the attempt to represent arbitrary signals with a limited
set of basis functions in a fixed form.

Atomic decomposition generalizes basis expansions, for sparsely representing signals and best matching
their local structure. It can recover arbitrary signals in an overcomplete dictionary. Although the
decomposition in the overcomplete dictionary is not unique, it provides adaptability to select the best
representation, and allows for the compact representation of signals. According to different principles, various
methods have been developed for atomic decomposition, such as MOF, BOB, MP, and BP. In these
approaches, a dictionary is a collection of parametric waveforms, and an atom is a parametric waveform. In
order to best match the local structure of arbitrary signals, a variety of overcomplete waveform dictionaries
are constructed correspondingly, e.g. wavelet packets, cosine packets [11], Gabor atoms [12,13], damped
sinusoids [19], chirplets [20,21], FMmlets [22], and dopplerlets [23].

2.1. Dictionary and atom

The dictionary extends the basis. It is a collection of parametric waveforms, namely a library of functions,
which might not satisfy the condition of orthonormality required by basis. Usually, the dictionary used in
atomic decomposition is overcomplete and redundant, i.e. the number of waveforms in the dictionary is larger
than the length of the signal analyzed, and some elements in the dictionary can be represented in terms of
other ones.

A parametric waveform in the dictionary is called an atom. Arbitrary signals can be reconstructed by
superposing a series of atoms associated with certain physical meaning, and the characteristics of signals can
be interpreted in terms of the properties of atoms, e.g. in the time–frequency analysis of signals, the energy,
location and variation of signal components is represented by the building block associated with the
constructing atom.

In order to match the local structure of signals, the dictionary must be carefully designed adapting to the
signal properties. At present, various dictionaries have been constructed. For example, the Dirac dictionary is
simply a collection of Dirac functions, which is suitable to analyze impulses. The Fourier dictionary, a typical
frequency dictionary, is a collection of sinusoidal waveforms with their frequencies sampled more finely, and is
effective in analyzing harmonic oscillations. The wavelet dictionary, a representative of time-scale dictionaries,
is a collection of translations and dilations of a basic mother wavelet, together with translations of a father
wavelet, and it is efficient in analyzing signals with constant proportional bandwidth. In order to study the
property of complicated signals from different points of view, various time–frequency dictionaries are
proposed, such as wavelet packets, cosine packets, chirplets, FMmlets, and dopplerlets, etc. Wavelet packets is
a time–frequency dictionary frequently used, which includes a standard orthogonal wavelet dictionary, Dirac
dictionary, and a collection of waveforms spanning over a range of bandwidths and durations.

2.2. Signal decomposition in overcomplete dictionary

Signal decomposition represents a signal s as a superposition of elementary waveforms fg

s ¼
X

g2G

agfg ¼ Fa (1)
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or in an approximation form

s ¼
Xm

i¼1

agi
fgi
þ rm, (2)

where a is coefficient, g is a parameter associated with elementary waveforms, G is a parameter collection of
elementary waveforms, F is the matrix form of elementary waveform collection, and rm is a residue.

Unlike traditional basis expansions, e.g. Fourier expansion in an orthogonal basis, atomic decomposition
represents arbitrary signals in an overcomplete dictionary, and the decomposition result is not unique.
Theoretically, finding the best decomposition in an overcomplete dictionary is a complicated process as
follows. Firstly, compute the inner product coefficients of a certain signal with all the atoms in the dictionary.
Then, sort the atoms by the coefficients. Finally, approximate the signal with the first m atoms. Although it
provides adaptability and sparsity in signal representation, finding the best signal decomposition is an NP-
hard problem and very time-consuming. Fortunately, a sub-optimal solution via optimization methods is
acceptable and feasible in application. Presently, several atomic decomposition approaches in overcomplete
dictionaries have been presented, including MOF, BOB, MP, and BP.
2.2.1. Method of frames

The MOF [9,10] selects the representation with minimum l2 norm of coefficients, i.e.

min ak k2 subject to Fa ¼ s. (3)

The solution to MOF is unique, while it is not sparsity preserving, and is intrinsically resolution limited. The
computational complexity of MOF is of the order O(N lnN), where N is the signal length.
2.2.2. Best orthogonal basis

The BOB [11] method is specially designed for the wavelet packets and cosine packets dictionaries. It finds
the orthogonal basis minimizing an additive entropy measure of coefficients, i.e.

min E sðBÞ½ �jortho basis B � D
� �

. (4)

In some cases, BOB delivers near-optimal sparse representations. When the signal has a sparse
representation in an orthogonal basis from the library, BOB will work well. However, when the signal is
composed of a moderate number of highly nonorthogonal components, it may not deliver sparse
representations. In this sense, the demand for BOB to find an orthogonal basis prevents it from finding a
highly sparse representation. The computational complexity of BOB is of the order O(N lnN).
2.2.3. Matching pursuit

The MP [12,13] is a stepwise greedy approximation algorithm. Starting from a null initial model, it
iteratively builds up an approximation by adjoining at each stage an atom which best correlates with the
current residue. In each iteration, MP selects an atom that best minimizes the signal residue

min rmk k2. (5)

MP is essentially a nonlinear optimization problem without analytical solution. It can be solved by means of
some optimization routines, such as zooming algorithm, Newton–Raphson [12–14], and genetic algorithm
[24–26].

When the dictionary is orthogonal, MP works well. Otherwise, the situation becomes less clear. Because the
algorithm is dependent on the local signal structure, it might choose wrong atoms in the first few iterations,
and consequently, spend most time correcting the mistakes made in the first few iterations. The computational
complexity of MP is of the order CMPN lnN, where CMP is the number of the atoms selected.

As a general signal decomposition algorithm with a profound mathematic foundation, MP has been widely
studied and applied in the signal processing community. Some refinements are presented to improve it, such as
orthogonal MP [27,28], optimized orthogonal MP [29,30], and high-resolution MP [31].
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2.2.4. Basis pursuit

The BP [15] chooses the decomposition with minimum l1 norm of coefficients, i.e.

min ak k1 subject to Fa ¼ s. (6)

BP is a convex nonquadratic optimization principle, rather than an algorithm. In essence, it is equivalent to
linear program. Some global optimization rules, such as simplex algorithm and interior point method, can be
employed to solve it.

Compared with MOF, BOB, and MP, BP is featured by super-resolution and better sparsity, whereas it
suffers from slower computational speed. The computational complexity of BP is of the order CBPN lnN,
where CBP is the number of atoms selected.

3. Gear vibration signal analysis

The gear vibration is dominated by the tooth pair meshing effect and the gear rotation. Tooth deflection
under load, initial machining errors, and wear, are manifested at the tooth meshing frequency and its
harmonics. Localized faults, such as cracks and spalls, give a wide range of harmonics and sidebands
throughout the spectrum. However, distributed faults due to eccentricity and distortion give stronger
harmonics grouped around zero frequency and sidebands around the harmonics of tooth meshing frequency.

Sidebands are generated by amplitude modulation and/or phase modulation as a result of faulty teeth
meshing. In many investigations, the sideband structure in the spectrum is accepted as a symptom of the tooth
damage, and the localization of the damage can be identified by the spacing between the sideband and the
meshing frequency. However, because of inevitable manufacturing and assembling errors, the sidebands may
exist in the spectrum even if the gear is normal. Therefore, it is sometimes difficult to identify the reason of the
gear malfunction by means of the spectral analysis only.

Impulses characterize vibration of the damaged gear. Theoretically, periodic impulses, including the
intensity and the time interval, are the robust symptom of tooth damage. Unfortunately, it is not easy to
extract impulses directly by means of traditional basis expansion methods, either the Fourier or the wavelet
transform. Instead of representing an impulse with infinite sinusoids in the Fourier expansion, the atomic
decomposition is capable of extracting impulses inherent in arbitrary signals directly, as long as the employed
dictionary includes suitable atoms, like the Dirac dictionary, to match them. In this sense, the atomic
decomposition provides a new approach to analyze gear vibration and identify tooth damage.

3.1. Specification of gearbox and measurement

The on-site measured vibration signals of the gearboxes in two pump sets presented in the Ref. [32] are
analyzed in this paper to demonstrate the effectiveness of the above-mentioned atomic decomposition
methods. The pump sets are identical: the pump is driven by an electromotor with a gearbox as speed
reduction set, and the two pump sets have similar power consumption, age and amount of running hours. One
pump set shows severe gear damage (pits, i.e. surface cracks due to unequal load and wear, the damaged areas
spread in the center of each gear tooth surface, refer to Ref. [32] for details about the gear damage), whereas
the other set runs normally.

The number of teeth in the first gear wheel is 13, and the driving shaft speed is 997 rev/min (namely the
rotational frequency is 16.6Hz), therefore the gear meshing frequency is 13*997/60 ¼ 216Hz. The vibration is
measured with seven accelerometers at different positions near the structural elements, such as the shaft, the
gears, and the bearings. The data is filtered by an analog low-pass filter with cutoff frequency of 5000Hz, and
sampled at 12,800Hz. In the following section, the vibration signals from the accelerometers radially mounted
near the driving shaft are analyzed to demonstrate the performance of atomic decomposition.

3.2. Time– frequency analysis

Due to the motion property, i.e. rotation and teeth meshing, the damaged gear vibration consists mainly of
periodic impulses and harmonic oscillations. In the time domain, it may be approximately an amplitude
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Fig. 1. Waveform and power spectrum: (a) healthy gear and (b) faulty gear.
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modulation and/or phase modulation. Meanwhile, in the frequency domain, the gear meshing frequency and
its harmonics, the gear pair rotational frequencies, the sidebands grouped around the harmonics, and other
frequency components may co-exist in the spectrum. In this sense, gear vibration signals are of multiple
components, and each component has a unique feature. Consequently, it is more physically meaningful to
extract each component directly and interpret the corresponding vibration behavior separately.

Gear tooth imperfections, due to manufacturing inaccuracy, eccentricity, and elastic deformation, are
inevitable. Therefore, it is not easy to identify whether a gear has fault or not, only according to the spectral
analysis, except when a severe damage occurs. The vibration signal waveforms and power spectrums of the
healthy and faulty gearboxes are shown in Figs. 1(a) and (b), respectively. From the waveforms, no significant
difference can be found between the healthy and faulty gearboxes. The meshing frequency, its harmonics, and
sidebands co-exist in the power spectrum of both the healthy and the faulty gearboxes. For the healthy one,
the frequency components range from 0 to 3000Hz. While for the faulty one, the signal concentrates in a
relatively low frequency band of 0–2000Hz, and the amplitude at each frequency bin shows a significant
difference from the healthy gearbox. However, the power spectrum displays no obvious signature similar to
the symptom of any typical gear fault, so that it is not easy to identify the fault reason only by means of the
power spectrum.

Instead of approximating a signal with a given type of basis, and analyzing it in only either the time or
frequency domain, as the traditional Fourier analysis does, the atomic decomposition extracts the char-
acteristic waveforms consisted in the signal directly, and allows for further analysis in the time–frequency joint
domain, thus ensuring more clear and meaningful interpretation of the information contained in the signal.

3.2.1. Compound time– frequency dictionary

It is impossible to know the exact waveform of gear vibration signal components, but empirical knowledge
and prior visual inspection of signals help in constructing a dictionary to approximate the characteristic
structures by means of atomic decomposition. The dictionary should be carefully designed in order to not only
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Fig. 2. Time–frequency plots of typical atoms: (a) Fourier atom, (b) Dirac atom, (c) wavelet atom and (d) wavelet atom.
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best match the characteristics of gear vibration, but also ensure the implementation of atomic decomposition
algorithms. Regarding the properties of gear vibration signals and the requirement of fine time-frequency
resolution, a compound dictionary consisting of the Fourier dictionary, Dirac dictionary, standard orthogonal
symlet-8 wavelets dictionary, and a collection of the waveforms spanning over a range of bandwidths and
durations, which are employed to pursue the harmonic oscillations, impulses, and other transient phenomena
of gear vibration, respectively, is constructed for the atomic decomposition. The time–frequency plots of some
typical atoms, such as the Fourier, Dirac, and wavelet atoms, are shown in Figs. 2(a)–(d), respectively (the
signal waveform is shown on the top, its power spectrum density at left, and a gray bar or color bar denoting
the time–frequency distribution amplitude at right. It is the same for the display of other time–frequency
analysis results).
3.2.2. Time– frequency analysis based on atomic decomposition

The vibration signals of the healthy and faulty gearboxes (for the reason of computational complexity and
limited PC memory, the truncated signals of the first 512 points are used in the time–frequency analysis) are
analyzed by means of atomic decomposition methods based on the compound time–frequency dictionary, and
the time–frequency plots of the MOF, BOB, MP, and BP decompositions are shown in Figs. 3–6, respectively.

MOF extracts the meshing frequency and its harmonics, the impulses, and other transient vibration
simultaneously, as shown in Fig. 3. For the healthy gearbox, some impulses appear in the time–frequency
distribution, but the interval between consecutive impulses is not regular. In engineering application,
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degenerate lubrication or load fluctuation may cause the momentary break down of oil film between sliding
gear tooth surfaces, and accordingly result in impulses even though the gear is healthy. In this sense, these
irregular impulses do not indicate any gear damage. While for the faulty gearbox, some quasi-periodic
impulses appear in the time–frequency distribution, with a regular interval of about 4–5ms (e.g. the interval
between the consecutive impulses A–C, as well as that between D–F). Theoretically, if localized damage
spreads evenly over all the gear teeth, then when each gear teeth pair goes into mesh, the oil film between
sliding gear tooth surfaces will break down, resulting in an impulse. Furthermore, if the gear pair rotates at a
strictly constant speed and runs under a strictly constant load, an impulse train will appear with a period equal
to the gear meshing period. While the on-site condition is undoubtedly different from the ideal one, so the
consecutive impulses A-F do not constitute an ideal periodic impulse train. The non-consecutiveness (e.g. the
absence of some impulses at expected instants after impulse F) of these impulses is possibly attributed to
the complicated gear-shaft-bearing-casing vibration propagation which weakens and introduces interferences
to vibration signals, as well as the inevitable instantaneous load fluctuation and the uneven distribution of
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localized damage over all the gear teeth which may result in irregular impulses. Due to the inevitable
instantaneous fluctuation of gear rotational speed, the intervals between these consecutive impulses may differ
a little from each other. While these intervals are in the vicinity of the gear meshing period—4.6ms, and
approximately correspond to the gear tooth meshing frequency of 216Hz. In this sense, the nearly periodic
consecutive impulses indicate that localized damage exists on most of the gear teeth, which accords well
with the real condition of the faulty gearbox. Although the gear damage can be detected by means of
MOF, it should be noticed that the time–frequency plot consists of too many tiling blocks due to the
worse sparsity preserving property of MOF, influencing the further analysis, which is not expected in
application.

BOB is specially designed for signal decomposition based on the wavelet packets and the cosine packets
dictionaries. It successfully extracts the harmonic components corresponding to the peaks in power spectrum,
and some transient phenomena, but totally misses the characteristic impulses, as shown in Fig. 4. In this sense,
it is unsuitable to analyze the characteristic impulses of damaged gear vibration.
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MP identifies the meshing frequency and its harmonics, the impulses, and other transient vibration
successfully. As shown in Fig. 5, the decomposition is sparser than that of MOF. For the healthy gearbox,
some impulses appear in the time–frequency distribution, but the interval between consecutive impulses is
irregular. While for the faulty one, the significant impulses are nearly evenly spaced, with a regular interval of
about 4–5ms (e.g. the interval between the consecutive impulses A–C, as well as that between D–G) which
approximately corresponds to the gear tooth meshing period—4.6ms implying that localized damage spreads
over the gear teeth.

Similar to MP, BP identifies the meshing frequency and its harmonics, characteristic impulses, and other
transient vibration clearly, as shown in Fig. 6. For the healthy gearbox, some impulses appear in the
time–frequency distribution, but the interval between consecutive impulses is not regular. While for the faulty
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one, grouped periodic impulses are extracted, exhibiting a significant difference from the healthy one. The time
interval between the consecutive impulses A–D, as well as that between E–H, equals 4–5ms approximately,
which equals approximately the gear tooth meshing period—4.6ms, indicating the existence of localized
damage on gear tooth surface.

To further demonstrate the effectiveness of atomic decomposition in analyzing gear vibration signals,
another dataset of the faulty gearbox running at the same speed but under a different load is analyzed, and the
time–frequency plots of MP and BP are shown in Figs. 7 and 8, respectively. It can be seen that the meshing
frequency and its harmonics, periodic impulses, and other transient vibration are extracted simultaneously. In
particular, the consecutive impulses appear in the time–frequency plane near-periodically, and the interval
approximately equals 4–5ms, for example, in the time–frequency plot of MP, the interval between the
impulses A and B, that between C–E, and as well as that between F–H; in the time–frequency plot of BP, the
interval between the impulses A–C, as well as that between D–H. The interval corresponds approximately to
the gear tooth meshing period–4.6ms, implying that an impulse is produced when each gear teeth pair goes
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into mesh, and accordingly indicates that localized damage exists on the gear teeth. This again verifies the
feasibility of MP and BP in gear damage detection.

As mentioned above, such atomic decomposition methods as MOF, BOB, MP, and BP, successfully extract
the meshing frequency, its harmonics, and some transient vibration. Most of all, MOF, MP and BP show their
efficiency in simultaneously extracting the characteristic impulses of damaged gear vibration, while BOB fails
in doing this. In terms of sparsity, MP and BP outperform MOF, resulting in the clearer time–frequency plots
for gear diagnosis applications.
3.2.3. Comparison with traditional time– frequency analysis

To compare with traditional basis-expansion-based methods, the faulty gearbox vibration signal is analyzed
by means of short time Fourier transform and continuous wavelet transform, and the spectrogram and
scalogram are shown in Figs. 9 and 10, respectively.

Some Hamming smoothing windows of different lengths are used in the short time Fourier transform. It is
found that a shorter window emphasizes on the time localization, and is more effective in resolving the
characteristic impulses, as shown in Fig. 9(a) (in which the window length is about 1% of the signal length),
but totally misses the meshing frequency and its harmonics. A longer window highlights the frequency
resolution, and can identify the meshing frequency and its harmonics, but completely misses the characteristic
impulses, as shown in Fig. 9(b) (in which the window length is one-eighth of the signal length).

In order to extract the characteristic impulses in the signal, the Morlet wavelet is used in the continuous
wavelet transform. Among the wavelets with different parameters, it is found that the Morlet-5 wavelet
highlights the local events in the signal, and is effective in extracting the impulses, as shown in Fig. 10(a), but
fails to identify the meshing frequency and its harmonics. The Morlet-50 wavelet emphasizes the frequency
components, as shown in Fig. 10(b), but fails to extract the characteristic impulses.

As linear transforms, both short time Fourier transform and wavelet transform are subject to Heisenberg
uncertainty principle, i.e. the time localization and frequency resolution cannot be obtained at their highest
simultaneously, either of them can only be enhanced at the expense of the other one, so that their
time–frequency resolution is limited. In addition, as basis-expansion-based methods, the basis in either
Fourier or wavelet transform is fixed, therefore they lack adaptability in simultaneously matching the
complicated components inherent in gear vibration signals, such as the meshing frequency and its harmonics,
impulses, and other transient vibration. In this sense, they are inferior to atomic decomposition methods,
especially MP and BP.

In summary, the atomic decomposition shows advantages over the traditional basis expansion in the
analyses of gear vibration signals. Usually, an on-site measured gear vibration signal is complicated and of
multiple components, due to the inevitable manufacturing and assembling errors, and gear tooth deflection
under load. Various frequency components may co-exist in the spectrum, such as the rotational frequencies of
gear pair, meshing frequency, their harmonics, and sidebands. Because of the spectrum complexity, it is not
easy to identify the fault reason via spectral analysis only. While with a compound dictionary adapted to
matching the impulses, harmonics and other transient oscillations inherent in the signals, the transient
behaviors characteristic of gear vibration are extracted simultaneously, via the atomic decomposition
methods. Furthermore, by virtue of the time–frequency plot, the periodic impulses are identified clearly, and
accordingly the fault reason is interpreted well. Compared with the traditional basis-expansion-based
methods, the atomic decomposition is far more effective in simultaneously extracting the impulses and other
transient phenomena of gear vibration.
4. Conclusions

Different from traditional basis expansion, which has a strict requirement of orthonormality on basis
functions, atomic decomposition represents arbitrary signals in an overcomplete dictionary, which is pre-
constructed according to signal properties. Theoretically, it possesses advantages over traditional basis-
expansion-based signal analysis methods, especially in analyzing complicated signals and extracting
information contained, and also in representing arbitrary signals sparsely and adaptively.
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In general, gear vibration signals consist of complicated components, such as rotational frequency, meshing
frequency and its harmonics, impulses, and other transient phenomena. Periodic impulses characterize
damaged gear vibration. In order to extract the impulse feature of damaged gear vibration, atomic
decomposition methods, including MOF, BOB, MP, and BP, are used to analyze the vibration signals of both
healthy and faulty gearboxes, with a compound dictionary specially designed to match the local structure of
the signals. BOB does not seem to work effectively in extracting the characteristic impulses, while MP and BP
seem to have the most potential in extracting not only the meshing frequency and its harmonics but also the
characteristic impulses. Furthermore, via the time–frequency plot of the decomposition, the gear tooth
damage is identified effectively according to the interval of periodic impulses. By comparing atomic
decomposition with short time Fourier transform and continuous wavelet transform, it is found that the better
time–frequency resolution and adaptability to signal components enable atomic decomposition methods to
outperform traditional basis-expansion-based methods in analyzing gear vibration signals.

Atomic-decomposition-based time–frequency analysis is suitable for qualitative detection of gear damage.
While for quantitative evaluation of gear condition, the way to extract a feature from atomic decomposition
result to quantify gear damage degree is still a topic worthy of further research.
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